
MVx in Android



How I Became an Android Developer

Official documentation Blogs



After a Short While

Activities and Fragments of 500+ lines of code



Google for “Android Application Architecture”

Exactly what I looked for… said no one ever.



The best place to hide a dead body is page 2 of 
Google search results

I saw pages 2, 3, 4…



Android Architecture: Message-based MVC

view controller model

Activity



Tremendous improvement…

… but still didn’t feel quite right.



Android Architecture [in 10 parts]



Joshua Musselwhite’s Breakthrough

view controller model

Activity

The most important architectural breakthrough 
in Android development EVER!



The Main Benefit of MVx



Testability… ?

No need for MVx if you don’t unit test then? 



Better testability is just a by-product of the 
main MVx benefit



The main benefit of MVx is 
decoupled UI logic



UI logic in views seems to be the only common 
denominator of all MVx implementations



UI Logic Responsibilities

Render system output

Capture user interactions with UI elements and route them into the system 
(no handling)



UI logic must be decoupled due to its special 
characteristics



UI Logic Characteristics

Detailed and accurate requirements (UI mockups)

Much higher rate of change in most cases

Unreadable - verbose, messy, hacky, etc.

Easiest to test manually

Hardest to test automatically



Why not decouple UI logic inside Activity?



Example: Outsourcing

UI logic should be 
decoupled from the rest 
of the application

Detailed UI specification

MyActivity

<<interface>>

MyViewMvx

Would you integrate this class 
into your app “as is”?



The Whole Picture

MyActivity

<<interface>>

MyViewMvxLife-cycle

Screens navigation

Runtime permissions

Loaders

Dependency injection

Fragments

Dialogs

More…

UI logic



Activity is God Object with many 
responsibilities…

…therefore, it’s impossible to decouple UI logic if it 
resides inside Activity!



Fragments are God Objects too…
…therefore, it’s impossible to decouple UI logic if it 

resides inside Fragments either!



Can UI logic be decoupled outside of Activities 
and Fragments?

Yes!



Extract UI Logic Into Standalone Class

MyViewMvxImplMyActivity

<<interface>>

MyViewMvx

Composition instead of inheritance

X

UI logic



From Theory to Practice



MVC or MVP or MVVM or … ?

Letters don’t matter!



I’m going to call it MVC!



Is this another “New and Shiny Android 
Architecture of the Month”?



2010: 
Ivan proposed MVC on 

Android

2012: 
Josh realized that Activity is 

controller

2014: 
Vasiliy improved view 

implementation and extended to 
Fragments

The most mature and battle-tested architectural pattern for Android 
development!



MVx in Android

The main benefit of MVx is decoupled UI logic

Extracting UI logic from Activities and Fragments is the only way to make it 
truly decoupled

Activities and Fragments take on their natural role – controllers

MVC implementation you’re going to see is the most mature and battle-
tested architectural pattern for Android development


