[ssues with unit tests after production code:

Hard to deduce the requirements
Intrinsic bias in testing of the self-written code
Can’t know whether all requirements were tested

Boring



Test Driven Development



All tests up-front:

Create an empty class for SUT

Write all the required tests
You can expand SUT’s public APl to make the tests compile
You can’t write internal implementation of SUT

Write the internal implementation of the SUT

Run the tests

Debug until all tests pass



All tests up-front benefits and limitations:

+ Hard to deduce the requirements
+ Intrinsic bias in testing of the self-written code
- Can’t know whether all requirements were tested

+- Boring



Three Rules of TDD by Uncle Bob




1. You are not allowed to write any production
code unless it is to make a failing unit test
pass

2. You are not allowed to write any more of a
unit test than is sufficient to fail; and
compilation failures are failures

3. You are not allowed to write any more
production code than is sufficient to pass
the one failing unit test



You are not allowed to write any production code
unless it is to make a failing unit test pass



You are not allowed to write any more of a unit test
than is sufficient to fail; and compilation failures
are failures



You are not allowed to write any more production
code than is sufficient to pass the one failing unit
test



Uncle Bob’s technique benefits and limitations:

+ Hard to deduce the requirements
+ Intrinsic bias in testing of the self-written code
+ Can’t know whether all requirements were tested

+ Boring



Uncle Bob’s technique additional benefits:

Design requires less mental effort

Sometimes you have a bad day and can’t do design, but you can
always write a simple test and make it pass [probably Kent Beck]



Uncle Bob's technique special requirement:

Fast cycle of incr. build + test



Synchronous execution:

All effects of method call happen before the method returns

Return value contains flow execution result



Asynchronous execution:

Method call can have effects after the method returns

Flow execution result will be known after the method returns



How to get the results of asynchronous execution?

Observer!



Test Driven Development



Scope of TDD:

Writing unit tests after the production code is hard
For me Unit Testing = TDD

TDD is a skill that needs to be practiced



All test up-front:

Good fit for small classes (three test cases or less)

Can be used on projects with long build times



Uncle Bob’s technique:

Granular

Dynamic

Guaranteed functional coverage

Reduces mental complexity of software development

Requires reasonable build times



Async execution:

Observer design pattern



Be pragmatic!



